OVMS

Open Vehicle Monitoring System

www.openvehicles.com

OVMS Protocol
Guide v2.5.1 (11" August 2013)

http://www.openvehicles.com/

History

V251 11" August 2013
v2.1.4 12" March 2013
v2.1.3 18" February 2013
v2.1.2 20" December 2012
v2.1.1 16" December 2012
v1i.5.1 5" November 2012
Change Log

v2.5.1

e Add support for cooldown

Add support for Cooldown and ‘h’ message
Add support for CAC

Add support for owner sync

Add support for command #6 (charge alert)
Add support for historical records
Conversion to new format

e Add support for ‘h’ message
e Extensions to some messages

v2.1.4
e Add support for CAC

v2.1.3

e Add support for owner sync

v2.1.2

e Add command #6 (charge alert)

v2.1.1

e Add “H” Historical Data Update message
e Add command 31 (Request historical data summary)
e Add command 32 (Request historical data records)

Welcome

The OVMS (Open Vehicle Monitoring System) team is a group of enthusiasts
who are developing a means to remotely communicate with our cars, and are
having fun while doing it.

The OVMS module is a low-cost hardware device that you install in your car
simply by installing a SIM card, connecting the module to your car’s Diagnostic
port connector, and positioning a cellular antenna. Once connected, the OVMS
module enables remote control and monitoring of your car.

LI =15 5
L0 o 1 5
ENCRYPTION PROTECTION SCHEME 0X30........uuuummmemmmmnrrrererrinnisssssssssssssssnsssssssssssssnssssssns 5
AUTO PROVISIONING.cuueueuersersessessessssnsasssssasssssssssssssssssssssssnsssssssessasssnssssssssssssssssnsans 7
Auto Provisioning Protection Scheme 0X30........cccciiiiiiiiiiieeiieeeeeeeeee 7
BACKWARDS COMPATIBILITY ..cceisscssssssssnsnnnsnnssssssssssssssssssssssssssssssssssssnssssssssssnsssssssnnnnnns 9
CAR <=3 SERVER <=3 APP......uuuuttttmmrieiiiiimiiiinsssssssssssssssssssssss s sssss s sssssssssssssssss 9
PiNng mMessage OX41 A ...t 10
Ping Acknowledgement message OX61 "a".......ooooriiiiiiiieieee e 10
Command Message 0X43 "C" ... e 10
Command resPONSE OXB3 "C".....eeiiiiieiiee e e e 10
Car Environment message 0X44 "D"........cceeeioeeeeie e eeea e 11
Paranoid-mode encrypted message 0x45 "E"........ccccevveiiieeiiiiiiiieeee e 13
Car firmware message OX46 "F" ... 14
Server firmware message 0X66 "f"........c.eveeiiee e 14
Car group subscription message 0X47 "G"........cccoveeeeeeeeeeeeeeeeeeeeeeeeeaes 15
Car group update message OX67 "g"....occveeeeeiiiiiee e 15
Historical Data update message 0x48 "H".........cooo e 16
Historical Data update+ack message 0X68 "h"..........ccccoeiiiiiiiiiiiiiiiiiiiiiis 17
Push notification message 0X50 "P".........eeii e 18
Push notification subscription OX70 "P".......ccueeeiiiiiieiee e 18
Server -> Server Record message 0X52 "R"......ccveeiiiiiiiieee e 19
Server -> Server Message Replication message 0X72 "r"......cccccceeeeiieeeeeennn. 19
Car state message 0X53 "S" 20
Car update time message 0X53 "T".....oo oo 21
Car location Message OXAC "L".....ccueeeieie et 21

Car Capabilities message 0X56 “V......ccoe oo 21

Car TPMS message OX57 "W ... 22
Peer connection message OXSA "Z" ... 23
COMMANDS AND EXPECTED RESPONSES......ccciiiiiiiiissssssssssssnsssnnsnssssssssssssssssssssssnsssssns 24
1 - Request feature list.........ooo e 24
P2 1= B (== L1 (- S 24
3 - Request parameter liSt....... ... 25
4 - Sl PArAMEIEL ... 25
5 - REDOOL. ... 26
Il O 0 = U0 =N = o S 26
7 — Execute SMS COMMANG......cooiiiiiiiiiiiiieee e 26
10 - Set Charge MOdE.........coeeiee i 26
LIS - U O g = o TSR 26
12 - SEOP Charge. ... 27
15 - Set Charge CUIMENt........ooiiei e 28
16 - Set Charge Mode and CUIeNt..........ooeeiiiiieeeceieee e 28
17 - Set Charge Timer Mode and Start Time........c.cooveciiiiiieeeeiieeeeeeeeeeeis 28
18 - WAKEUP CaF ..ot 28
19 - Wakeup temperature subSyStem...........ceoeeiiiiiiiiiiiiiiiiie e 28
P20 I o o 1l 5 29
21 - Activate Valet MOde.......ccooooeieeeeeeeeeeeeeee e 29
22 - UNIOCK Car..ciiiiiiieiiee ettt e e e e e e e e e 29
23 - Deactivate Value MOdE.........ccuuiiiiiiieee e 29
P2 o (o0 0 1= I o 30
2L I ©o o] o [0)Y/ o PP 30
30 - Request GPRS utilization data...........cccceeeeeiiiiice e 30
31 - Request historical data summary.........ccccooeiiiieiiiiiiee e 31
32 - Request historical data records.........cccveevvieeiiiiiiiiiie e 31
40 - SENA SIS s 32
41 - Send MMI/USSD COdES.......uuuiiieeeeiiiiirteieee e e e e e 32
49 - Send raw AT COMMANG........eeiiiieeeiieirieiieee e e e e e e e e e e e e e e e e e e eeeees 32

The OVMS Protocol

Terms

e Server: the OVMS server

e C(Car: the OVMS car module

e App: a mobile app talking to the OVMS server
On startup

Caller sends welcome message to the server:
e Forcars:
MP-C <protection scheme> <car token> <car digest> <car id>
e Forapps:
MP-A <protection scheme> <app token> <app digest><car id>
e For servers:
MP-S <protection scheme> <server token> <server digest><car id>
Server responds welcome message to the caller:

MP-S <protection scheme> <server token> <server digest>

Encryption Protection Scheme 0x30

This scheme is based on using shared secrets, hmac digest for authentication
and encryption key negotiation, with RC4 stream cipher and base64 encoding.

Upon startup, both the server and callers generate random tokens (encoded as
textual characters). Each party then hmac-md5s the token with the shared secret
to create a digest, base64 encoded.

Note that the server will only issue it's welcome message after receiving and
validating the caller's welcome message.

Validation of the welcome message is performed by:

1. Checking the received token to ensure that it is different from its own
token, and aborting the connection if the same.

2. Hmac-md>5s the received token with the shared secret and comparing the
result to the received digest.

3. Ithe digest match, then the partner had authenticated itself (proven it
knows the shared secret, or has listened to a previous conversation).

4. If the digests don't match, then abort the connection as the partner doesn't
agree with the shared secret.

Once the partner has been authenticated:

1. Create a new hmac-md>5 based on the client and server tokens
concatenated, with the shared secret.

2. Use the new hmac digest as the key for symmetric rc4 encryption.
3. Generate, and discard, 1024 bytes of cipher text.

From this point on, messages are rc4 encrypted and base64 encoded before
transmission. Lines are terminated with CR+LF.

Auto Provisioning

A caller can perform auto-provisioning at any time (authenticated or not).
However, only one auto-provision can be performed for each connection.

Auto-Provisioning relies on two secrets known both to the server and client. The
first is usually the VIN of the vehicle and the second is usually the ICCID of the
SIM card in the vehicle module. The reason these two are chosen is that they
can be auto-determined by the vehicle module, but also clearly seen by the user
(for entry into the server).

The mechanism works by the client module first determining its VIN and ICCID
secrets, then connecting to the server and sending a AP-C message to the
server proving its VIN. The server will then lookup the auto-provisioning record,
and reply with that to the client (via a AP-S or AP-X message).

The auto-provisioning record itself is platform dependent, but will typically be an
ordered space separated list of parameter values. For OVMS hardware, and
OVMS.X PIC firmware, these are merely parameters #0, #1, #2, etc, to be stored
in the car module.

Auto Provisioning Protection Scheme 0x30
e Forcars:
AP-C <protection scheme> <apkey>
e For servers:
AP-S <protection scheme> <server token> <server digest> <provisioning>
AP-X

When the provisioning record is created at the server, a random token is
generated (encoded as textual characters). The server then hmac-md5s this
token with the shared secret (usually the ICCID known by the server) to create a
digest, base64 encoded. Using this hmac digest, the server generates and
discards 1024 bytes of cipher text. The server then rc4 encrypts and base64
encodes the provisioning information and stores its token, digest and encoded
provision record ready for the client to request.

The car knows its VIN and ICCID. With this information, it makes a connection to
the OVMS service on the server, and provides the VIN as the <apkey> in a AP-C
message to the server.

The server will ensure that it only responds to one AP-C message for any one
connection. Once responded, all subsequent AP-C requests will always be
replied with a AP-X message.

Upon receiving the AP-C message, the server looks up any provisioning records
it has for the given <apkeys. If it has none, it replies with an AP-X message.

If the server does find a matching provisioning record, it replies with an AP-S
message sending the previously saved server token, digest and encoded
provisioning record to the car.

If the car receives an AP-X message, it knows that auto-provisioning was not
successful.

If the car receives an AP-S message, it can first validate the server authenticity.
By producing its own hmac-md5 of the server token and secret ICCID, the car
can validate the server-provided digest is as expected. If this validation step does
not succeed, the car should abort the auto-provisioning.

If acceptable, the car can decrypt the provisioning record by first generating and
discarding 1024 bytes of cipher text, then decoding the provisioning record
provided by the server.

Backwards Compatibility

Typically, comma-separated lists are used to transmit parameter. Applications,
Servers and the Car firmware should in general ignore extra parameters not
expected. In this way, the protocol messages can be extended by adding extra
parameters, without breaking old Apps/Cars that don't expect the new
parameters.

Similarly, unrecognized messages should due ignored. Unrecognised commands
in the "C" (command) message should be responded to with a generic
"unrecognized" response (in the "c" (command response) messages).

Car <-> Server <-> App

After discarding CR+LF line termination, and base64 decoding, the following
protocol messages are defined.

<message> ::= <magic> <version> <space> <protmsg>

<magic> ::= MP-
<version> ::= 1 byte version number - this protocol is 0x30
<space> ::= "' (ascii 0x20)

<protmsg> ::= <servertocar> | <cartoservers | <servertoapp> | <apptoserver>
<servertocars ::- "S" <payload>

<cartoservers ::= "C" <payload>

<servertoapp> ::="s" <payload>

<apptoservers ::= ""c" <payload>

<payload> ::= <code> <data>
<code> ::= 1 byte instruction code
<data> ::= N bytes data (dependent on instruction code)

Ping message Ox41 "A"
This message may be sent by any party, to test the link. The expected response

is a 0x61 ping acknowledgement. There is no expected payload to this message,
an any given can be discarded.

Ping Acknowledgement message 0x61 "a"

This message is sent in response to a 0x41 ping message. There is no expected
payload to this message, an any given can be discarded.

Command message 0x43 "C"

This message is sent <apptoserver> then <servertocar> and carries a command
to be executed on the car. The message would normally be paranoid-encrypted.

<data> is a comma-separated list of:
e command (a command code 0..65535)
e parameters (dependent on the command code)

For further information on command codes and parameters, see the command
section below.

Command response 0x63 "c"
This message is sent <cartoserver> then <servertoapp> and carries the
response to a command executed on the car. The message would normally be
paranoid-encrypted.
<data> is a comma-separated list of:

e command (a command code 0..65535)

e result (0=0k, 1=failed, 2=unsupported, 3=unimplemented)

e parameters (dependent on the command code and result)

For result=0, the parameters depend on the command being responded to (see
the command section below for further information).

For result=1, the parameter is a textual string describing the fault.

For result=2 or 3, the parameter is not used.

10

Car Environment message 0x44 "D"

This message is sent <cartoserver> "C", or <servertoapp> "s", and transmits the
environment settings of the vehicle.

<data> is comma-separated list of:

Door state #1

bit0 = Left Door (open=1/closed=0)

bit1 = Right Door (open=1/closed=0)

bit2 = Charge port (open=1/closed=0)

bit3 = Pilot present (true=1/false=0) (always 1 on my 2.5)
bit4 = Charging (true=1/false=0)

bit5 = always 1

bit6 = Hand brake applied (true=1/false=0)

bit7 = Car ON ("ignition") (true=1/false=0)

Door state #2

bit3 = Car Locked (locked=1/unlocked=0)

bit4 = Valet Mode (active=1/inactive=0)

bit6 = Bonnet (open=1/closed=0)

bit7 = Trunk (open=1/closed=0)

Lock/Unlock state

4 = car is locked

5 = car is unlocked

Temperature of the PEM (celcius)

Temperature of the Motor (celcius)

Temperature of the Battery (celcius)

Car trip meter (in 1/10th of a distance unit)

Car odometer (in 1/10th of a distance unit)

Car speed (in distance units per hour)

Car parking timer (0 for not parked, or number of seconds car parked for)
Ambient Temperature (in Celcius)

Door state #3

bit0 = Car awake (turned on=1 / off=0)

bit1 = Cooling pump (on=1/0ff=0)

Stale PEM,Motor,Battery temps indicator (-1=none, O=stale, >0 ok)
Stale ambient temp indicator (-1=none, O=stale, >0 ok)
Vehicle 12V line voltage

Door State #4

bit2 = alarm sounds (on=1/off=0)

Reference voltage for 12v power

Door State #5

11

e Temperature of the Charger (celsius)

Paranoid-mode encrypted message 0x45 "E"

This message is sent for any of the four message <protmsg> types, and
represents an encrypted transmission that the server should just relay (or is
relaying) without being able to interpret it. The encryption is based on a shared
secret, between the car and the apps, to which the server is not privy.

<data> is:
e <paranoidtoken> | <paranoidcode>
* <paranoidtoken> ::="T" <ptoken>
e <paranoidcode> ::= "M" <code> <data>

In the case of <paranoidtoken>, the <ptoken> is a random token that represent
the encryption key. It can only be sent <cartoserver> or <servertoapp>. Upon
receiving this token, the server discards all previously stored paranoid messages,
sends it on to all connected apps, and then stores the token. Every time an app
connects, the server also sends this token to the app.

In the case of <paranoidcode>, the <code> is a sub-message code, and can be
any of the codes listed in this document (except for "A", "a" and "E"). The <data>
is the corresponding encrypted payload message. The encryption is performed
on the <data> by:

1. Create a new hmac-md>5 based on the <ptoken>, with the shared secret.

2. Use the new hmac digest as the key for symmetric rc4 encryption.

3. Generate, and discard, 1024 bytes of cipher text.
and the data is base64 encoded. Upon receiving a paranoid message from the
car, the server forwards it on the all connected apps, and then stores the
message. Every time an app connects, the server sends all such stored
messages. Upon receiving a paranoid message from an app, if the car is
connected, the server merely forwards it on to the car, otherwise discarding it.

12

Car firmware message 0x46 "F"

This message is sent <cartoserver> "C", or <servertoapp> "s", and transmits the
firmware versions of the vehicle.

<data> is comma-separated list of:
e Car firmware version
e Car VIN
e GSM signal level
e Write-enabled firmware (O=read-only, 1=write-enabled)
e Cartype (TR=Tesla Roadster, others may follow)
e GSM lock

Server firmware message 0x66 "f"

This message is sent <servertocar> "S", or <servertoapp> "s", and transmits the
firmware versions of the server.

<data> is comma-separated list of:
e Server firmware version

13

Car group subscription message 0x47 "G"

This message is sent <apptoserver> "A", and requests subscription to the
specified group.

<data> is comma-separated list of:
e Group name

Car group update message 0x67 "g

This message is sent <cartoserver> "C", or <servertoapp> "s", and transmits a
group location message for the vehicle.

<data> is comma-separated list of:
¢ Vehicle ID (only <servertoapp>, not sent <cartoserver>)
e Group name
e CarSOC
e Car Speed
e Car direction
e Car altitude
e Car GPS lock (0=nogps, 1=goodgps)
e Stale GPS indicator (-1=none, O=stale, >0 ok)
e Car latitude
e Car longitude

14

Historical Data update message 0x48 "H"

This message is sent <cartoserver> "C, and transmits a historical data message
for storage on the server.

<data> is comma-separated list of:
e type (unique storage class identification type)
e recordnumber (integer record number)
e lifetime (in seconds)
e data (a blob of data to be dealt with as the application requires)

The lifetime is specified in seconds, and indicates to the server the minimum time
the vehicle expects the server to retain the historical data for. Consideration
should be made as to server storage and bandwidth requirements.

The type is composed of <vehicletype> - <class> - <property>

1% 34

<Vehicletype> is the usual vehicle type, or
for all vehicles.

to indicate generic storage suitable

<Class> is one of:
e PWR (power)
e ENG (engine)
e TRX (transmission)
e CHS (chassis)
e BDY (body)
e ELC (electrics)
e SAF (safety)
e SEC (security)
e CMF (comfort)
e ENT (entertainment)
e COM (communications)
e X** (unclassified and experimental, with ** replaced with 2 digits code)

<Property> is a property code, which the vehicle decides.
The server will timestamp the incoming historical records, and will set an expiry

date of timestamp + <lifetime> seconds. The server will endeavor to retain the
records for that time period, but may expend data earlier if necessary.

15

Historical Data update+ack message 0x68 "h"

This message is sent <cartoserver> "C”, or <severtocar> “c”, and
transmits/acknowledges historical data message for storage on the server.

For <cartoserver>, the <data> is comma-separated list of:
e ackcode (an acknowledgement code)
e timediff (in seconds)
e type (unique storage class identification type)
e recordnumber (integer record number)
e lifetime (in seconds)
e data (a blob of data to be dealt with as the application requires)

The ackcode is a numeric acknowledgement code — if the server successfully
receives the message, it will reply with ‘h’ and this ackcode to acknowledge
reception.

The timediff is the time difference, in seconds, to use when storing the record
(e.g.; -3600 would indicate the record data is from one hour ago).

The lifetime is specified in seconds, and indicates to the server the minimum time
the vehicle expects the server to retain the historical data for. Consideration
should be made as to server storage and bandwidth requirements.

For <servertocar>, the <data> is:
e ackcode (an acknowledgement code)

The <cartoserver> message sends the data to the server. The <servertocar>
message acknowledges the data.

16

Push notification message 0x50 "P"

This message is sent <cartoserver> "C", or <servertoapp> "s". When used by the
car, it requests the server to send a textual push notification alert message to all
apps registered for this car. The <data> is 1 byte alert type followed by N bytes of
textual message. The server will use this message to send the notification to any
connected apps, and can also send via external mobile frameworks for
unconnected apps.

Push notification subscription 0x70 "p"

This message is sent <apptoserver> A". It is used by app to register for push
notifications, and is normally at the start of a connection. The <data> is made up
of:

<appid>,<pushtypes>,<pushkeytype>{,<vehicleid>,<netpass>,<pushkeyvalue>}

The server will verify the credentials for each vehicle, and store the required
notification information.

17

Server -> Server Record message 0x52 "R"

This message is sent <servertoserver> "S", and transmits an update to
synchronized database table records.

Sub-type RV (Vehicle record):
<data> is comma-separated list of:

e Vehicleid
e Owner

e (Carpass

e v _server
e deleted

e changed

Sub-type RO (Owner record):
<data> is comma-separated list of:
e Ownerid
e OwnerName
e OwnerMail
e PasswordHash
e OwnerStatus
e deleted
e changed

Server -> Server Message Replication message 0x72 "r"

This message is sent <servertoserver> "S", and replicates a message for a
particular car.

<data> is comma-separated list of:
e vehicleid
¢ message code
* message data

Car state message 0x53 "S"

This message is sent <cartoserver> "C", or <servertoapp> "s", and transmits the
last known status of the vehicle.

<data> is comma-separated list of:
e SOC
e Units ("M" for miles, "K" for kilometers)
e Line voltage
e Charge current (amps)
e Charge state (charging, topoff, done, prepare, heating, stopped)
e Charge mode (standard, storage, range, performance)
e |deal range
e Estimated range
e Charge limit (amps)
e Charge duration (minutes)
e Charger B4 byte (tba)
e Charge energy consumed (1/10 kWh)
e Charge sub-state
e Charge state (as a number)
e Charge mode (as a number)
e Charge Timer mode (0=onplugin, 1=timer)
e Charge Timer start time
e Charge timer stale (-1=none, O=stale, >0 ok)
e Vehicle CAC100 value
e ACC: Mins remaining until car will be full
e ACC: Mins remaining until car reaches charge limit
e ACC: Configured range limit
e ACC: Configured SOC limit
e Cooldown: Car is cooling down (0=no, 1=yes)
e Cooldown: Lower limit for battery temperature
e Cooldown: Time limit (minutes) for cooldown
e ACC: charge time estimation for current charger capabilities (min.)
e Charge ETR for range limit (min.)
e Charge ETR for SOC limit (min.)
e Max ideal range
e Charge/plug type ID according to OpenChargeMaps.org connectiontypes
(see http://api.openchargemap.io/v2/referencedata/)
e Charge power (kWh)
e Battery voltage (V)

19

http://api.openchargemap.io/v2/referencedata/

Car update time message 0x53 "T"

This message is sent <servertoapp> "s", and transmits the last known update
time of the vehicle.

<data> is the number of seconds since the car last sent an update message

Car location message 0x4C "L"

This message is sent <cartoserver> "C" and transmits the last known location of
the vehicle.

<data> is comma-separated list of:
e Latitude
e Longitude
e Car direction
e Car altitude
e Car GPS lock (0=nogps, 1=goodgps)
e Stale GPS indicator (-1=none, O=stale, >0 ok)
e Car speed (in distance units per hour)
e Car trip meter (in 1/10th of a distance unit)

Car Capabilities message 0x56 “V”

This message is sent <cartoserver> “C”, or <servertoapp> “s”, and transmits the
vehicle capabilities. It was introduced with v2 of the protocol.

<data is comma-separated list of vehicle capabilities of the form:
e (C<cmd> indicates vehicle support command <cmd>
e (C<cmdL>-<cmdH> indicates vehicle will support all commands in the
specified range

20

Car TPMS message 0x57 "W"

This message is sent <cartoserver> "C", or <servertoapp> "s", and transmits the

last known TPMS values of the vehicle.

<data> is comma-separated list of:
e front-right wheel pressure (psi)
e front-right wheel temperature (celcius)
e rear-right wheel pressure (psi)
e rear-right wheel temperature (celcius)
e front-left wheel pressure (psi)
e front-left wheel temperature (celcius)
e rear-left wheel pressure (psi)
e rear-left wheel temperature (celcius)
e Stale TPMS indicator (-1=none, O=stale, >0 ok)

21

Peer connection message Ox5A "Z"

This message is sent <servertocar> or <servertoapp> to indicate the connection
status of the peer (car for <servertoapp>, app for <servertocar>). It indicates how
many peers are currently connected. It is suggested that the car should use this
to immediately report on, and to increase the report frequency of, status - in the
case that one or more Apps are connected and watching the car.

<data> is:
¢ Number of peers connected, expressed as a decimal string

22

Commands and Expected Responses

For message types "C" and "c", the following commands and responses are
expected to be supported:

1 - Request feature list
Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing
the following parameters:

e feature number

e maximum number of features

e feature value

Registered features are:
e O Digital SPEEDO (experimental)
e 8: Location STREAM mode (consumes more bandwidth)
e O Minimum SOC
e 15: CAN bus can write-enabled

Note that features 0 through 7 are 'volatile' and will be lost (reset to zero value) if
the power is lost to the car module, or module is reprogrammed. These features
are considered extremely experimental and potentially dangerous.

Features 8 through 15 are 'permanent' and will be stored as parameters 23
through 31. These features are considered more stable, but optional.

2 - Set feature

Command parameters are:
e feature number to set
e value to set

Response parameters are unused, and will merely indicate the success or not of
the result.

23

3 - Request parameter list
Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing
the following parameters:

e parameter number

e maximum number of parameters

e parameter value

Registered parameters are:

e O Registered telephone number
Registration Password
Miles / Kilometer flag
Notification method list
Server IP
GPRS APN
GPRS User
GPRS Password
Vehicle ID
Network Password
0: Paranoid Password

[]
SN RN

Note that some parameters (24 through 31) are tied directly to the features
system (for permanent features) and are thus not directly maintained by the
parameter system or shown by this command.

4 - Set parameter

Command parameters are:
e parameter number to set
e value to set

Response parameters are unused, and will merely indicate the success or not of

the result.

24

5 - Reboot
Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result. Shortly after sending the response, the module will reboot.

6 - Charge Alert
Command parameters are unused and ignored by the car.
Response parameters are unused, and will merely indicate the success or not of

the result. Shortly after sending the response, the module will issue a charge
alert.

7 - Execute SMS command

Command parameter is:
e SMS command with parameters

Response is the output of the SMS command that would otherwise have been
sent as the reply SMS, with LF characters converted to CR.

The caller id is set to the registered phone number. Return code 1 is used for all
errors, i.e. authorization failure, command failure and unknown/unhandled
commands.

Att: SMS commands with multiple replies are not yet supported, only the last
reply will be returned.

10 - Set Charge Mode

Command parameters are:
¢ mode (O=standard, 1=storage,3=range,4=performance)

Response parameters are unused, and will merely indicate the success or not of
the result.

11 - Start Charge

25

Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result.

12 - Stop Charge
Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result.

26

15 - Set Charge Current

Command parameters are:
e current (specified in Amps)

Response parameters are unused, and will merely indicate the success or not of
the result.

16 - Set Charge Mode and Current

Command parameters are:
¢ mode (O=standard, 1=storage,3=range,4=performance)
e current (specified in Amps)

Response parameters are unused, and will merely indicate the success or not of
the result.

17 - Set Charge Timer Mode and Start Time
Command parameters are:
¢ timermode (O=plugin, 1=timer)
e start time (0x059F for midnight GMT, 0x003B for 1Tam GMT, etc)

Response parameters are unused, and will merely indicate the success or not of
the result.

18 - Wakeup car
Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result.

19 - Wakeup temperature subsystem
Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result.

27

20 - Lock Car

Command parameters are:
e pin (the car pin to use for locking)

Response parameters are unused, and will merely indicate the success or not of
the result.

N.B. unlock/lock does not affect the immobilizer+alarm (when fitted)

21 - Activate Valet Mode

Command parameters are:
¢ pin (the car pin to activate valet mode)

Response parameters are unused, and will merely indicate the success or not of
the result.

22 - Unlock Car

Command parameters are:
e pin (the car pin to use for unlocking)

Response parameters are unused, and will merely indicate the success or not of
the result.

N.B. unlock/lock does not affect the immobilizer+alarm (when fitted)

23 - Deactivate Value Mode

Command parameters are:
e pin (the car pin to use for deactivating value mode)

Response parameters are unused, and will merely indicate the success or not of
the result.

28

24 - Home Link

Command parameters are:
e button (home link button 0, 1 or 2)

Response parameters are unused, and will merely indicate the success or not of
the result.

25 - Cooldown
Command parameters are unused and ignored by the car.

Response parameters are unused, and will merely indicate the success or not of
the result.

30 - Request GPRS utilization data
Command parameters are unused and ignored by the car.

Response is a sequence of individual messages with each message containing
the following parameters:

e record number

e maximum number of records

e date

e car received bytes

e car transmitted bytes

e apps received bytes

e apps transmitted bytes

Note that this request is handled by the server, not the car, so must not be sent
in paranoid mode. The response (from the server) will also not be sent in
paranoid mode.

N.B. Dates (and GPRS utilization data) are in UTC.

29

31 - Request historical data summary

Command parameters are:
* since (optional timestamp condition)

Response is a sequence of individual messages with each message containing
the following parameters:

e type number

e maximum number of types

e type value

e number of unique records (per type)

e total number of records (per type)

e storage usage (in bytes, per type)

e oldest data timestamp (per type)

e newest data timestamp (per type)

N.B. Timestamps are in UTC.

32 - Request historical data records

Command parameters are:
e type (the record type to retrieve)
e since (optional timestamp condition)

Response is a sequence of individual messages with each message containing
the following parameters:

e response record number

e maximum number of response records

e data record type

e data record timestamp

e data record number

e data record value

30

40 - Send SMS
Command parameters are:
e number (telephone number to send sms to)

e message (sms message to be sent)

Response parameters are unused, and will merely indicate the success or not of
the submission (not delivery) of the SMS.

41 - Send MMI/USSD Codes

Command parameters are:
e USSD_CODE (the ussd code to send)

Response parameters are unused, and will merely indicate the success or not of
the submission (not delivery) of the request.

49 - Send raw AT Command

Command parameters are:
e at (the AT command to send - including the AT prefix)

Response parameters are unused, and will merely indicate the success or not of
the submission (not delivery) of the request.

31

	Terms
	On startup
	Encryption Protection Scheme 0x30
	Auto Provisioning
	Auto Provisioning Protection Scheme 0x30

	Backwards Compatibility
	Car <-> Server <-> App
	Ping message 0x41 "A"
	Ping Acknowledgement message 0x61 "a"
	Command message 0x43 "C"
	Command response 0x63 "c"
	Car Environment message 0x44 "D"
	Paranoid-mode encrypted message 0x45 "E"
	Car firmware message 0x46 "F"
	Server firmware message 0x66 "f"
	Car group subscription message 0x47 "G"
	Car group update message 0x67 "g"
	Historical Data update message 0x48 "H"
	Historical Data update+ack message 0x68 "h"
	Push notification message 0x50 "P"
	Push notification subscription 0x70 "p"
	Server -> Server Record message 0x52 "R"
	Server -> Server Message Replication message 0x72 "r"
	Car state message 0x53 "S"
	Car update time message 0x53 "T"
	Car location message 0x4C "L"
	Car Capabilities message 0x56 “V”
	Car TPMS message 0x57 "W"
	Peer connection message 0x5A "Z"

	Commands and Expected Responses
	1 - Request feature list
	2 - Set feature
	3 - Request parameter list
	4 - Set parameter
	5 - Reboot
	6 – Charge Alert
	7 – Execute SMS command
	10 - Set Charge Mode
	11 - Start Charge
	12 - Stop Charge
	15 - Set Charge Current
	16 - Set Charge Mode and Current
	17 - Set Charge Timer Mode and Start Time
	18 - Wakeup car
	19 - Wakeup temperature subsystem
	20 - Lock Car
	21 - Activate Valet Mode
	22 - Unlock Car
	23 - Deactivate Value Mode
	24 - Home Link
	25 - Cooldown
	30 - Request GPRS utilization data
	31 - Request historical data summary
	32 - Request historical data records
	40 - Send SMS
	41 - Send MMI/USSD Codes
	49 - Send raw AT Command

